双螺纹设计对种植体稳定性的影响
双螺纹设计对种植体稳定性的影响
【摘要】 目的 通过共振频率分析仪和组织病理形态学来比较分析双梯形螺纹种植体和经典的“V”型螺纹种植体对种植体的初期稳定性及功能性负荷下后期稳定性的影响。方法 选择杂种狗12只,拔除下颌前磨牙,3月后植入种植体,再经3个月愈合后行修复治疗,负重3个月后处死。在植入、修复、负重1个月、负重2个月及处死时分别应用共振频率分析测量种植体的稳定性。处死后取标本制成非脱矿磨片进行组织形态学分析。结果 两组种植体在各时期的稳定度差异均无显著性,但在每一时期实验组种植体的稳定度均较对照组高,实验组种植体在负重后稳定度恢复较快,负重3个月后实验组的骨-种植体接触率(BIC)和种植体周围骨面积(BA)均较对照组稍高,但两者差异无显著性。结论 双梯形螺纹种植体有利于保证种植体的初期和后期稳定性,应用于低密度骨质优越性会加明显。
【关键词】 种植体;螺纹;稳定性
种植体的设计是指种植体的三维结构,包括其几何形态和表面形态的变化。螺纹状种植体具有较大的骨-种植体接触面积,并且由于其几何形状的特性,可以有效地增加其初期稳定性[1]。另外,螺纹状种植体能够较好地将咬合力平均分配至周围的牙槽骨,因此与柱状种植体相比,螺纹状种植体被认为具有较好的治疗效果[2]。而螺纹的设计主要包括螺纹间距、螺纹的形状和螺纹的深度三个方面。本研究的目的在于是通过共振频率分析仪和组织病理形态学来比较分析新型螺纹设计的种植体和经典的“V”型螺纹种植体对种植体的初期稳定性及功能性负荷下后期稳定性的影响。
1 材料与方法
1.1 种植体及实验分组 实验组种植体为新型螺纹设计种植体,在初级螺纹上再次进行切割形成双梯形螺纹结构,初级螺纹间距为0.8mm,螺纹的角图1 在初级螺纹上再次进行切割形成双梯形螺纹结构 度为60°,具体型见图1;对照组为“V”形单螺纹种植体螺纹间距为0.6mm,螺纹的角度也为60°,所有种植体表面均经RBM(Resorbable blast media)处理,直径为4.0mm,长度分别为11.5mm。每种种植体取6颗分别植入12条成年杂种狗,体重为20~25kg(种植体由韩国奥齿泰公司提供Osstem Bio,Korea.见图2,3)。
1.2 手术过程 经全身麻醉(Ketamine 10mg/kg及Rumpun 5mg/kg im)后,拔除实验动物双侧下颌前图2 双梯形螺纹种植体图3 单“V”形螺纹种植体磨牙。愈合3个月后,在前磨牙区顺牙槽嵴顶切开翻瓣,行逐级备洞后分别植入种植体,种植机转速控制在l,500rpm以下,同时持续给予大量生理盐水冷却。最后将龈瓣复位,行间断缝合。3个月后再次切开,连接实心基台,行单个树脂冠修复,调整咬合,进行负重。负重3个月后分别将动物处死获取标本。
1.3 种植体稳定度的测量 种植体在植入、修复、负重1个月、负重2个月及处死时分别应用共振频率分析(Resonance Frequency Analysis, RFA)测量种植体的稳定度。Osstell装置是一种可临床应用的共振频率分析仪(OstellTM, Intrgration Diagnostics,Goteberge, Sweden),在测量种植体稳定度时,Osstell装置的数值有两种表示方法:一种为共振频率(Hz);另一种为种植体稳定系数(Implant stability quotient,ISQ), ISQ值的大小表示了种植体骨界面的刚性强度。在本实验中,我们采用ISQ记数模式来测定种植体的稳定度,ISQ数值由1到100,数值越大表示种植体具有越好的稳定度。在实验中每一回均测量3次,取其平均值。
1.4 脱矿组织磨片制备 行下颌骨骨块切除获取种植体及周围骨组织标本后,立刻将其浸泡于10%富尔马林液固定48h,然后经浓度递次升高的乙醇脱水,再将标本置入塑化树脂(Exakt System, Exakt Apparatebbau, Norderstedt, Germany)中聚化固定。再用硬组织切片机(Exact-cutting Grinding System, Exact Apparatebbau)顺种植体的长轴颊舌向将含有种植体的塑脂块切割成厚度为100~150 μm薄片,在流水冷却下最终打磨至约30μm。在标本制备过程中注意保护骨-种植体界面。组织切片制备完成后行苏木素-伊红(Haematoxylin-eosin)染色,光镜下观察。
1.5 组织形态学分析 通过100×光学显微镜(Olympus, Japan)观察分析骨种植体界面的组织成分。标本的组织形态经高分辨率影像处理(GP15/2; Kappa, Germeny)并传入显示器后测量种植体颊侧中份连续三个螺纹中的骨-种植体接触面,其分析数据以骨-种植体接触率(BIC: bone-implant contact)及种植体周围骨面积(BA:mineralized bone area)来表示。
骨-种植体接触率(BIC) =(骨-种植体接触长度/种植体总长度)×100%
种植体周围骨面积(BA)=(螺纹内骨面积/螺纹内总面积)×100%
1.6 统计学分析 两种种植体的ISQ以及BIC和BA之间的差异通过t检验进行统计学分析。P<0.05则被认为差异有显著性。
2 结果
2.1 临床观察 在实验期间,所有动物均保持健康无并发症,种植体无松动,临床成活率为100%。X-线检查见图4,5。
2.2 种植体稳定度 本研究结果显示两组种植体在植入时、负重时及负重后每一期间的种植体的稳定度差异均无显著性,但实验组种植在每一期间的种植体的稳定度均较对照组高,实验组的种植体的稳定性在负重1个月时最低,然后逐渐增高,并在第2个月时就超过了负重的稳定度,而对照组的种植体稳定度在负重2个月后持续下降,直至第3个月时才开始恢复(见表1)。图4 实验组X-线检查图5 对照组X-线检查表1 两组种植体的ISQ值及统计学处理 (略)
2.3 组织形态学分析 实验组种植体在负重3个月后的骨-种植体接触率(BIC)和种植体周围骨面积(BA)均较对照组稍高,但两者差异无显著性(见表2)。表2 两组种植体的BIC值和BA值 (略)
3 讨论
种植体在植入骨内后具有足够的稳定性不仅是种植体周围的骨组织在愈合期间新生和改建的必要条件,而且还可以使功能性的口腔咀嚼咬合力能够通过骨-种植体界面理想地传导并分布至牙槽骨上。种植体的稳定性主要取决于三方面的因素:即骨-种植体相接触的面积和强度、周围骨组织的强度以及种植体的弹性强度[3]对于愈合期及功能期而言,种植体的稳定性的含义是截然不同的,良好的初期稳定性在种植体植入时是必须的,后期的稳定性则是相对于功能期的种植体而言的,是发生在骨整合形成之后的[4]。设计螺纹的目的在于增大种植体表面积,使种植体与骨的初期接触面积最大化,同时有利于分散骨-种植体界面的应力[1]。种植体的生物机械学性能与种植体的螺纹设计有着密切关系,而螺纹的设计主要包括螺纹间距、螺纹的形状和螺纹的深度三个方面。
螺纹间距越小单位长度的种植体上的螺纹也越多,相应的表面积也越大。因此在合力大、骨密度低的区域可应用螺纹间距小的种植体来增加种植体的表面积。但是,种植体螺纹的多少与手术操作的难易有着直接的关系,螺纹越少,功丝和种植体的植入就越简单,尤其是在骨质较硬部位,选用螺纹少的种植体更易进行手术操作。近来还设计生产了双螺纹或三螺纹结构的种植体,种设计可以使种植体更快地植入,缩短手术时间,从而减少了热量的产生,有利于种植体与周围骨组织的结合;同时由于这种种植体在植入时需要更大的植入扭矩,因此也强化了周围骨组织对种植体的卡抱力,使种植体具有更高的初期稳定性。本研究使用的种植体是在初级螺纹上再次进行切割形成双梯形螺纹的结构,初级螺纹间距为0. 8mm,较对照组种植体螺纹间距大,但双螺纹的设计使种植体的表面积并未减少。实验结果虽然显示两组种植体在植入时种植体稳定度差异无显著性,但实验组的种植体稳定系数(ISQ)较对照组略高,证明了实验组种植体并未因螺纹间距的增大而影响种植体的初期稳定性,而新型设计的双螺纹结构不仅可以使种植体植入简单,还有助于提高种植体的初期稳定性。
螺纹的形状是螺纹设计的另一重要部分,螺纹的形态不仅可以改变功能性负荷下的应力的大小还可以影响骨-种植体界面应力的类型。常用的种植体主要有“V”型螺纹、平螺纹和锯齿形螺纹等。在咬合负重时,“V”型螺纹和锯齿形螺纹种植体的应力集中位于螺纹的尖顶部。Kohn等[5]通过病理观察发现在“V”型螺纹种植体(Branemark, Nobel Biocare)上给予侧向负荷,骨-种植体的直接接触只发现在螺纹的基底部,而在螺纹尖顶部分则没有骨-种植体的直接接触,这是由于在侧向负荷下在“V”型螺纹尖顶部产生了更高的微张力(Microstrain), 使种植体周围的骨组织以吸收为主,而在螺纹的基底部产生的微张力较小,使周围骨组织得以维持。Kim等[6]应用三维有限元素分析,对“V”型螺纹、锯齿形螺纹和平螺纹三种螺纹设计的种植体进行了比较研究,结果显示在同等负荷条件下,和“V”型螺纹和锯齿形螺纹种植体相比较,作用在平螺纹种植体上的剪切应明显小于其他两种种植体。另有动物实验研究显示,“V”型螺纹、倒锯齿形螺纹和平螺纹三种种植体在经过
编辑推荐
种植牙比烤瓷牙稳定性高的理由
种植牙、烤瓷牙,口腔界两朵奇葩,各有千秋,简单的比较好坏,是不绝对的,适合自己的才是最好的。这里,小编为您介绍下,种植牙相比烤瓷牙的优势:
相对于烤瓷牙而言,种植牙不单在性能、寿命以及适应症更为广泛外,种植牙的硬度、稳定性也比烤瓷牙更为优秀的。同样作为补牙的修复手段,为何种植牙比烤瓷牙更为稳定,效果更佳呢?
这得益于两者种植方式的不同。种植牙是在牙骨内打入金属牙根,待金属牙根与牙槽骨紧密结合后,在其上装置假牙,犹如造房前必须打下深厚的地基,才能使房屋牢固、稳定。而烤瓷牙是以磨小的牙齿作为支撑,稳定烤瓷牙的,就像是用几根柱子来固定房子,当然房子不稳定了;至于活动假牙,则是以很大的底板作为基托,异物感较强,虽然房子稳定,但是以牺牲舒适度为代价来换取稳定度的,因而房子虽然稳固,但住的不舒服的,人也感觉别扭的。
所以,种植牙比传统假牙更稳固,不易移动,更受到人们欢迎。此外,在一些较为特殊的情况上,种植牙的应用还是比烤瓷牙更为优秀的。如当全口牙齿缺失时,必须制作全口假牙,传统假牙由于仅靠牙床粘膜软组织的支持,固定力量薄弱,不但假牙容易松动,咀嚼功能也不佳,仅能恢复正常功能的三四成而已。加上如果牙龈受力不当,牙槽骨将逐渐萎缩,假牙效果也越来越差。而种植牙则无移动或咀嚼功能不好的情况,且稳定和硬度更高,而且种植牙对植入部位的牙槽骨形成功能性刺激,延缓了牙槽骨的吸收,因而种植牙比烤瓷牙更为优秀,也更为稳定的了。
TPS螺纹型种植体
TPS种植体由纯钛制成,表面钛浆喷涂。该种植体由瑞士的Ledernann首先提出,属即刻种植体。可用于单个牙缺失的修复亦可用于下颌全口义齿的辅助固位,但不主张用于上颌骨。TPS种植术常需四个种植钉作支架,加弓杆连接。手术时先用机械钻在牙槽骨上钻导向孔,其余操作均采用手动工具完成。
种植体植入后直接穿龈,不需等待骨愈合便可戴牙。1988年,Ledermann又进行了TPS第二改型,改型后主要特点是将种植体骨组织结合部改为砂磨结构,并增加了种植体的自攻性能,可在骨壁上直接开槽旋入以增加其稳定性。
表面处理对种植体骨结合的影响
这个研究的首要目标是比较SLActive和TiUnite种植体在骨-种植体界面的抗剪切强度。第二个目标是比较两个不同的表面骨和种植体的接触量BIC。
这项研究的假设是,通过生物力学和组织学手段评价SLActive种植体能够更好的促进材料和骨的结合。
材料和方法
试验选择总共30只兔子(最小年龄9个月),试验组的两个种植体(美学种植体standard plus,直径4.1mm.RN,8mm)和两个对照组的种植体(Replcce" Select Taper,直径4 .3 rnm. TiUnite?, 10 mm, 和8.5 mm TiUnite?种植体对照)植入胫骨,一个实验组和一个对照组种植体植入股骨。随机选择实验组和对照组植入左右侧。对10只兔子在愈合过程中的10天,3周,6周三个时间点进行评价。对种植在胫骨的的实验组和对照组的种植体进行抗剪切强度的测试,因此,测量移除种植体所需的力矩值,随后计算抗剪切强度值。所有种植体都进行组织形态学的研究。
结果
抗剪切强度
植入10天后,SLActive种植体比TiUnite种植体的平均抗剪切强度高,但是没有统计学意义,在3周和6周种SLActive植体的抗剪切强度的均值仍高于TiUnite种植体,而且有统计学意义
组织学观察
本实验的第二个目的需经组织形态学的研究,目前正在进行中
结论
这个研究提出钛种植体的表面抗剪切强度很大程度上受其表面处理的影响,在兔的胫骨种植后3和6周,SLActive表面的种植体表现出有统计学意义的高抗剪切强度。
精密附着体与种植体的联合设计
牙列缺失的患者,因常规卡环固位型可摘局部义齿修复往往固位基托面积大,异物感强,固位稳定差,基牙受扭力创伤大,咀嚼效率不高,因而达不到患者的满意效果,近年来,我们参照国外学者研着成果结合临床实际工作经验,采用种植与精密附着体联合设计的方法,在临床上取得了满意的效果,而且患者也非常满意。
联合设计后的效果
上半口植入四个种植体后
下半口植入四个种植体后
戴入全口假牙后
下颌植入种植体并安装好球帽后
下颌戴入假牙后
戴入全口假牙后
经济,易清洁,同时解决了假牙易脱落的烦恼。
种植体数目对骨界面应力影响
从本实验结果可知,随着种植体数目的增加,种植体周围骨界面的应力值逐渐减小。这主要是由于种植体数目增加,减小了单个种植体的负荷,所以造成种植体骨界面应力值的减小。
而远中种植体骨界面的应力大于近中种植体,主要是由于覆盖义齿的后缘一般均超过远中种植体而形成单端桥,而单端桥越长,远中种植体受力越医学教育|网搜集整理大,故在磨牙区种植可以较好地解决远中种植体松动的问题。
因此,在临床工作中,为维护种植体的健康,在可能的情况下,应尽可能多地选择种植体做基牙,同时注意远中种植体尽量靠近远中;如果因为其他原因无法选择较多数目的种植体时,应采到必要的措施,如在义齿与种植体之间使用弹性连接或其他散压装置、减小义齿的颊舌径、降低牙尖高度,增加食物溢出沟等均可减小种植基牙的受力,保护组织的健康,提高口腔种植的成功率。
种植体颈部的优化设计在预防种植体周围炎中的应用
种植体颈部的优化设计在预防种植体周围炎中的应用
种植体周围病变是牙种植体周围的炎性病损,根据其发生部位和严重程度分为种植体周围黏膜炎(mucositis)和种植体周围炎(peri-implantitis)。种植体周围黏膜炎是局限于种植体周围黏膜的可逆性炎症;而种植体周围炎是发生在种植体周围软、硬组织的炎症性损害,其特征是支持骨的丧失。它是造成种植体松动、甚至脱落的重要原因。研究表明,种植体周围种植修复6个月后黏膜炎和种植体周围炎的患病率分别为19%~65%、1%~47%。
近年来,关于种植体周围病变的发生机制及其预防、治疗的研究越来越深入,其中通过优化种植体颈部设计以预防种植体周围炎受到了广泛的重视。
1.种植体周围炎的病因及常规治疗方法
1.1种植体周围炎的病因分析
目前,菌斑作为种植体周围炎的始动因素得到了广泛的认同。细菌粘附、定植于种植体表面进一步引起周围组织的免疫应答可引起种植体周围病变,进而导致骨吸收甚至种植体脱落。研究表明,种植体-基台微间隙对种植体颈部周围骨的吸收有重要影响,细菌可通过微间隙进入种植体内部定居、繁殖,成为种植体周围炎的感染灶。种植体颈部表面的宏观形状设计影响应力分布,过度的生物力学应力可能会导致骨-种植体界面出现“微裂纹”,从而促进细菌滞留,最终引起种植体周围炎;另外,种植体表面的微观形貌及化学组成可通过影响细菌的粘附、定植参与种植体周围炎的发生及发展。牙周炎是种植体周围炎的重要危险因素,研究表明,牙周病患者更易发生种植体周围炎。从全身看种植体周围炎的危险因素还包括糖尿病、长期糖皮质激素治疗、放疗、化疗等。
近年研究还表明,基因多态性可影响个体对种植体周围炎的敏感程度,影响种植体周围炎的发生、发展。
1.2种植体周围炎的常规治疗方法
与牙周治疗类似,种植体周围炎的常规治疗主要包括菌斑控制、单独使用机械方法(手动/超声洁治、激光等)进行清创或联合应用抗菌剂、抗生素等非手术治疗以及手术治疗。然而,目前各种种植体周围炎的治疗方法均存在局限性,还没有建立统一的“金标准”,因此,通过优化种植体颈部设计从而预防种植周围炎的发生及发展有切实可行的应用前景。
2.通过优化种植体颈部设计预防种植体周围炎
在种植修复中,“骨结合”是指有生命的骨组织与种植体之间直接的结合,这种结合为种植体上部结构提供支持,发挥固定和支持作用,是种植体发挥功能的基础;而“软组织结合”是指结合上皮和结缔组织在种植体上的附着,作为一种重要的屏障,阻止口腔微生物的粘附、定植,为种植体骨结合提供稳定的环境;良好的骨结合和软组织结合是种植修复成功的重要保证。因此,通过优化种植体颈部设计以获得理想的骨结合和软组织结合并减少细菌的粘附与定植,对于预防种植体周围炎,进而提高种植体的成功率具有重要意义。
2.1种植体-基台连接方式设计在预防种植体周围炎中的作用
研究表明,由于行使生理功能时的咀嚼负荷、制造的误差及微动,种植体—基台微间隙不可避免[。平台转移是指基台直径小于平台直径,使基台连接位置向种植体平台中心内移。采用平台转移技术,种植体-基台微间隙内移,一方面能够转移应力,避免应力集中于种植体平台的边缘,起到减少骨吸收、保护骨结合的作用;另一方面减小了微间隙暴露于软硬组织中的范围,有利于减少细菌的粘附与定植。
研究证实,平台转移技术能够预防并减少种植体颈部的边缘骨吸收。Canullo等进一步研究发现,种植体颈部的边缘骨吸收与平台转移的距离呈显著负相关;同时观察到,当基台底部的直径比种植体平台直径小时,能够形成一个更浅的、更一致的结缔组织袖袋,从而形成更好的软组织封闭。此外,研究表明内连接系统比外连接系统存在更小的微间隙、微渗漏及微动,种植体颈部周围牙槽骨的吸收更少、碟形吸收更窄。
2.2种植体颈部表面的宏观形状设计在预防种植体周围炎中的作用
种植体在负载时,应力主要集中于种植体颈部与骨皮质接触的区域,因此,种植体的颈部的宏观结构设计对优化种植体应力分布有重要影响。从生物力学角度,种植体颈部的螺纹设计能够提供维持边缘骨水平的机械应力刺激。研究证实,相比光滑的颈部设计,螺纹结构更有利于保存骨水平。从结构上看,每个螺纹单元主要包含三种几何参数:螺纹形态、螺距、螺纹深度。Oswal等运用三维有限元分析评价三种种植体螺纹形态(V形/偏梯形/反偏梯形)的应力分布模式,结果提示不同的螺纹形态对不同类型的骨质作用有差异,其中反偏梯形螺纹更有利于保存骨组织。
Kong等认为,从生物力学角度考虑,种植体螺距的最佳选择应大于0.8mm。然而,螺距越小,螺纹数目越多,总表面积越大,更有利于提高初期稳定性。Sun等将具有不同颈部螺纹深度的种植体植入比格犬下颌骨,观察其对种植体周围组织的影响,发现螺纹深度对骨-种植体接触、骨水平及软组织水平的影响没有统计学差异。Kang等发现,较大的颈部螺纹结构(螺距/深度=0.6mm/0.35mm)与较小的颈部螺纹结构(螺距/深度=0.3mm/0.15mm)在功能性负载1年后,平均边缘骨吸收量的差异也没有统计学意义。
理想的种植体颈部的螺纹设计能够优化应力分布,有利于保护骨结合,进而降低种植体周围炎发生的风险,然而螺纹的具体几何参数对种植体周围组织的影响尚存在争议。此外,通过改良种植体颈部的宏观结构可能促进种植体周围上皮和结缔组织的附着。Huh等发现,颈部具有凹形颈圈设计的种植体周围的生物学宽度较小。进一步研究发现,凹形颈圈周围结缔组织中的胶原纤维形成宽500μm的“O”形封闭圈,能够加强结缔组织对种植体表面的附着。Lai等发现,穿黏膜颈部具有宽60μm、深5μm或10μm的沟槽设计的种植体能够促进牙龈成纤维细胞纤连蛋白及黏着斑蛋白的表达,从而有利于软组织结合。
2.3种植体颈部表面的微观形貌设计在预防种植体周围炎中的作用
目前研究表明,种植体表面粗糙度对种植体周围上皮以及纤维结缔组织的附着会产生不同的影响,其中光滑表面更适合上皮细胞粘附,而粗糙表面可促进成纤维细胞的粘附。Baharloo等在6种不同粗糙度的材料上培养上皮细胞,发现较光滑表面(Ra:0.06μm)能促进上皮细胞粘附增殖,并通过对黏着斑蛋白进行免疫荧光染色,发现其黏着斑更多更大,提示上皮细胞在较光滑表面具有更强的粘附力。Wang等发现,在纳米级别粗糙度(Ra:2.75~30.34nm),成纤维细胞的粘附力随粗糙度增大而增加。因此,通过对种植体颈部表面粗糙度的改良有望优化上皮下结缔组织排列方式,进而提高软组织封闭效果,从而降低种植体周围炎发生的风险。
然而,一般认为菌斑易于附着在种植体粗糙表面上附着。研究表明,当Ra小于0.2μm时,生物膜的定性及定量检测随粗糙度减小未见明显降低,因此将“阈值Ra”定义为Ra<0.2μm。然而,目前研究尚未明确既能促进种植体软组织封闭又能有效地抑制细菌粘附定植的粗糙度范围。种植体表面自由能对细菌粘附、定植的影响尚存在争议。大多数口腔微生物表面自由能较高,提示疏水表面可能更有利于阻止微生物粘附。然而,Villard等将钛及氧化锆种植体进行表面硅烷化,在表面粗糙度及化学组成相同的条件下,发现钛表面自由能降低而氧化锆表面自由能增高,白色念珠菌菌落形成单位(CFU)都显著减少。
研究表明,亲水表面更有利于促进骨结合。Rochford等将聚醚醚酮(PEEK)薄膜进行氧等离子体处理以提高表面自由能,并在其上共培养表皮葡萄球菌及人骨肉瘤细胞(U-2OS),发现U-2OS细胞附着增加,提示氧等离子体处理的PEEK能够促进成骨样细胞的附着而不增加细菌粘附的风险。因此,亲水表面可能更有利于种植体周围炎的预防。
2.4种植体表面化学改性在预防种植体周围炎中的作用
局部应用抗生素是控制菌斑的有效手段,因此也被用于种植体表面处理。对于抗生素的选择,广谱及良好的耐热性是最重要的要求。庆大霉素是最广泛应用于钛种植体表面涂层中的抗生素之一,其他广谱抗生素如万古霉素等,也被用于种植体表面的抗菌涂层。抗生素结合于涂层的方法及其释放速率会对抗生素的有效性产生影响。具有良好生物相容性和骨传导性的磷酸钙被认为是具有潜在应用价值的生物活性分子载体,然而该体系难以达到缓释的效果;此外,生物降解聚合物和溶胶-凝胶涂层也被用于种植体表面控释抗生素涂层的研究。Lucke等将一种新型的载庆大霉素生物可降解聚乳酸(PDLLA)涂层应用于大鼠模型,发现其能有效预防钛金属植入物相关的骨髓炎,且PDLLA涂层在最初48h内释放80%的抗生素,相比磷酸钙涂层其释药更为缓慢。硅溶胶-凝胶涂层可在2周内实现万古霉素的控制释放。在体外研究中发现,直接将万古霉素共价修饰于种植体表面能够长期维持抗菌活性。
然而,种植体植入体内后,其表面很快会形成一层蛋白质层,共价修饰的抗生素能否穿过蛋白质层发挥有效的作用,还有待进一步的研究。考虑到应用抗生素涂层可能出现的细菌耐药问题,各种非抗生素有机/无机抗菌涂层近年来也有研究报道。氯己定是最常用于口腔消毒的药物,体外实验表明,醋酸氯己定涂层(CHA)能减少种植体表面及其周围介质的细菌数,但其使用会影响成纤维细胞的生长。Lee等发现,氯己定对成骨细胞也有细胞毒性,在0.005%浓度下即显著抑制成骨细胞的生长,其抑制作用具有剂量依赖性。因此,虽然氯己定具有显著的抑菌效果,但是由于其对种植体周围细胞具有潜在的影响,可能并不适合涂覆于种植体表面。乳铁蛋白(LF)是一种具有抗菌性的蛋白。Nagano-Takebe等发现,乳铁蛋白吸附于钛表面能够抑制格氏链球菌粘附,提示将乳铁蛋白吸附于种植体穿黏膜颈部表面有利于抑制细菌粘附,进而预防种植体周围炎。银离子通过“僵尸效应”可有效抑制细菌的粘附及增殖。
Zhao等发现,载纳米银颗粒的TiO2纳米管(NT-Ag)在实验前4d能杀死细菌悬液中的全部浮游细菌,并能持续作用30d,提示NT-Ag结构能够预防种植术后早、中甚至后期的种植体周围感染。进一步研究表明,在低浓度下银离子能够杀死细菌而对成骨细胞及上皮细胞没有细胞毒性。聚醚醚酮/纳米含氟羟基磷灰石(PEEK/nano-FHA)生物复合材料具有良好生物相容性和抗菌性。Wang等发现,在体外实验中,PEEK/nano-FHA生物复合材料能有效抑制细菌增殖和菌斑形成,在体内实验中能够促进骨结合,有望成为一种新型的牙种植体材料。此外,抗菌肽、氮化物等也被应用于种植体表面抗菌涂层的研究。
理想的种植体表面抗菌涂层应具有长期有效抑制细菌的粘附、定植,并且有利于骨结合及软组织结合的作用。目前研究的各类抗菌涂层多数处于体外研究阶段,需要进一步的优化并应用于体内研究中证明有效性。
3.小结
综上所述,通过优化种植体颈部设计,特别是种植体-基台连接方式、表面宏观形状、微观形貌以及化学组成的改良,有望优化应力分布、促进种植体周围上皮和结缔组织的附着、减少细菌的粘附与定植,进而预防种植体周围炎,提高种植成功率。
来源:王雨薇,王了,包崇云.种植体颈部的优化设计在预防种植体周围炎中的应用[J].口腔医学,2018,38(02):177-180.
保持稳定的种植体周围牙槽骨高度
“平台转换(Platform-Switching)”理念.是通过使用相对每个种植体尺寸略小的部件,便可使种植体周围组织具有较大稳定性。法国美学牙科医学会主席Frdddric人Chiche认为,使用3i种植体时,这点很容易做到。他将在下文中阐述这种操作方法,并借助三个病例加以说明。
前牙区的种植术后种植体颈部无骨吸收,是确保齿龈乳头稳定的一个重要因素,也是获得与邻牙协调一致的牙龈曲线的重要保证。在使用螺钉固定的 Brfinemark种植体的头一年中,正常情况下总能观察到在种植体第一道螺纹高度牙槽骨的稳定。尽管人们曾经提出各种生物力学理论,但是它们的说服力并不强;现在,更完善的生物学知识更好地解释了该现象。事实上,人们观察到,当种植体裸露在外时,颈部周围便开始骨吸收;只要它是被遮盖住的,颈部高度牙槽骨就会保持稳定。
在负载、也就是外科二期手术后,颈部以下的骨的稳定性似乎取决于多种因素,例如生物学宽度的保持、结缔组织的炎症状况以及种植体表面的情况。1997年, Abrahamsson等人揭示,多次拧进和拧出嵌入螺钉会使种植体颈部周围上皮固定点发生根端移动。作者们强调,上皮移动进而会使骨高度发生根端移动,从而重建与种植体周围组织健康相协调的生物学宽度。此外他们还确定,基台与种植体间的边界层有细菌浸润。这种浸润会导致一个发炎的结缔组织区域的持续存在,从而进一步促进种植体与骨之间第一接触位置的根端移动。与迄今为止所提及的参数不同,种植体表面情况对骨吸收起着积极作用。如种植体表面粗糙,那么在加以负载,特别是即刻负载时,骨对钛种植体的附着能力便会大大提高。
”平台转换”原则
该原则是使用比种植体颈部直径略小的义齿部件,从而限制种植体周围的骨吸收。该策略基于1991年所做的病例观察和分析。在那些病例中,5mm大的种植体,都采用了直径为4mm的较小的基台,周围未发生骨吸收或者吸收极少,种植体周围牙槽骨高度保持稳定,而且不受负载阶段的影响。
该结果的可重复性使我们假设成立:基台与种植体间边界层的状况是影响牙槽骨顶部吸收部位和程度的决定性因素;还促使我们重新构造决定种植体周围生物学宽度的装置。种植体周围的生物学宽度被定义为种植体周围顶部骨边缘与种植体—基台连接处的距离(2-3mm)。如果种植体基台与种植体直径相同,也就是说两部分相互连接,那么这个距离就是结缔组织发炎的结果。通过使用比种植体颈部直径小的部件,义齿连接被推向种植体中部,从而扩大了周围骨与基台底座间的距离。与基台—种植体连接相关的发炎的结缔组织更多的存在于冠高度、颈高度,而不再根端移动至种植体的第一道螺纹处。这样便可避免骨吸收,种植体颈部高度的牙嚓骨得以保持稳定。
临床应用
“平台转换”尤其适用于那些希望获得最佳外观效果的病例。Small和Tarnow在2000年揭示,80%的病例在负载第一年会出现1mm的前庭退化。这种软组织退化的原因是骨萎缩,会给前牙区带来很大的危险。 人们只需借助“平台转换”理念,通过使用相对每个种植体尺寸略小的部件,便可使种植体周围组织具有较大稳定性。使用3i种植体时,这点很容易做到。 4mm、5mm及6mm的种植体具有同样的外六边,如果选用的是其系列产品,那么内部连接也相同。所使用的大部分种植体共有的这种特性使该系统在应用中具有极大的灵活性。无需使用任何特定部件,只要将一个直径4mm的基台用螺钉固定在直径5mm的种植体上,便可实现“平台转换”。依此类推,可用同样的方法将直径5mm的基台拧在直径6mm的种植体上。
根据治疗报告,放入后对种植体加负载时可采用以下方法。它可用于临时义齿,在临时义齿下部咬合时放入基台,这为个别情况;还可用于牙列缺失的患者做即时负载。
最为重要的是必须在种植体治疗的各个阶段保持部件的较小尺寸,直至最后制作出种植体所承载的义齿。
最后,种植体钛表面状况对保持颈部高度的骨也起着非常重要的作用。Testori等人在2001和2002年观察到,在对表面粗糙的种植体立刻加载,并借助用于组织研究,骨稳定发生在种植体的第三螺纹处,也就是说,在种植体抛光截面与粗糙截面的连接处。据Davies等人所说,粗糙表面降低了造骨细胞穿过纤维蛋白网络到达种植体表面的移动难度。基于此观察结果,从1996年开始,市场上出现了混合表面的FS版本(FullSurface)的 Osseotite种植体。此版本从上到下都是粗糙表面,而不是从第三螺纹处开始,从而能够促使直至种植体颈部的骨都保持稳定。
成功秘诀
在前牙区,种植体颈部高度的骨稳定性对于口腔种植的成功起着关键性作用。使用直径小于种植体直径的义齿基台能够限制常在种植后一年出现的牙槽骨顶部吸收。骨边缘和基座—种植体连接间距离扩大,使发炎的结缔组织移到更靠近冠部和中间的高度,这点可用于解释运用所谓“平台转换”理念取得的效果。尽管使用颈部抛光的种植体时也会观察到不出现骨吸收的情况,但是我们可以期待,使用完全粗糙的种植体能够进一步提高顶点高度的组织稳定性。
图1:通过正畸治疗能够在插入种植体前重建理想的近远中间距。(正畸科医生E.Serfaty博士)
图2:舌弓的存在使导板在前庭位置的插入得以简化,这样就能按义齿设计图把种植体固定在三维立体层面上。
图3 : 使用一个小直径种植体(MicroMiniplantN丁3ilmplantlnnovations),以确保种植体颈部与相邻牙齿间保持1.5mm的近远中最小间距。此间距是生成和保持齿龈乳头所必需的。
图4:所有义齿部件(嵌入螺钉、转移杆、基台)都与种植体直径相同。“平台转换”不可用于小直径种植体,因为基台尺寸太小会带来断裂危险。必须指出的是,无论哪种种植体系统,狭长种植体颈部高度的直径平均都为3.3至3.5mm。
图5:一年后的手术后效果。一个VMK牙冠被粘在钛基台上。高质量的外观效果源于牙龈乳头的存在。它证明种植体两侧都存在骨间隔。(义齿专家:P.Miara博士)
图6和7:第11号牙,显示有牙根吸收。这种状况缘于15年前的一次外部撞击。已进行牙髓治疗。直接对这颗牙齿做了种植.
图8:借助于无切口翻瓣技术限制骨暴露后导致组织吸收。
图9:通过“三合一”柱上的深度标记,确保对种植体(NTCertain,3ilmplantlnnovaUons)做精确的垂直定位。
图10:一个钛制的临时基台。内部连接形成了良好的固位,这样在所有调整阶段都不必用义齿螺钉固定基台。
图11:X光监控照片显示,存在一个直径小于种植体直径(5mm)的基台(直径4mm),这样能够根据“平台转换”理念保持种植体颈部高度的骨稳定性。
图12:手术后一年的临床效果一牙颈线和牙龈乳头存在,结合“平台转换”理念实施及时临时治疗的治疗策略,只会有极少的骨吸收。经过二至四个月的愈合阶段后,便可将一个永久性VMK牙冠装在牙列上。(义齿专家:C.Sabban博士)
图13和14:第11和21号牙齿的牙颈部曲线不同,这样就不能在拔牙后直接使用即时种植体,因为牙颈部曲不同可能会在相邻的自然牙齿的牙颈部曲上显得明显。
图15:为了获得一致的牙颈部曲线,使整个粘骨膜与牙槽骨发生冠向移动,决定牵引切牙,用了一个前庭领矫形装置。插图显示的是12个月后的临床效果。(正畸科医生:R.Garcia教授)
图16:在拔除第11和21号牙齿后直接使用了两个种植体。种植体的理想位置降低了安装临时齿冠的难度,因为不必再纠正种植体基台的高度。
图17:重衬临时牙冠,然后用临时粘固粉粘合。在骨结合阶段,它会被保留在种植体上,用于提高种植体—基台—义齿系统的强度。
图18:在手术后三个月的X光监控照片上可看见单个义齿基台(直径4mm)与宽圆锥形种植体(5mm,NTCertain)直径间的缝隙。种植体周围的骨盖住了所有螺纹以及种植体颈部。
种植体对人体有害吗
种植体对人体无害。常用的种植体材料主要是金属钛。钛的耐磨性好,耐腐蚀性好,弹性模量低与骨相近:生物相容性好,无毒无副作用,无磁性,无刺激,在体内稳定;湿润性好,不易附着有机物。钛在医疗上除用于种植体外,还广泛用于人工骨及关节、心脏瓣膜、心脏起博器等,是人体最安全的植入材料。由于选用的是与人体相容性极好的生物材料,种植牙对人体不产生任何不良的副作用。如果种植牙没有成功,可以取出种植体,待伤口愈合后再做种植,或者改用其他修复方法。
种植体直径和长度对支持组织应力分布的影响
种植体直径和长度对支持组织应力分布的影响
目的:观察种植体直径、长度变化时由种植体支持的下颌种植覆盖义齿,在力作用下其支持组织——牙槽骨及种植体周围的应力分布状况,探讨种植体长度和直径变化对支持组织应力分布的影响规律。方法:用三维光弹应力冻结切片法,对4 种不同长度,3 种不同直径的种植体支持的种植覆盖义齿,在力作用下的应力状况进行应力冻结,并在相应部位切片观察,以了解各种状况下其支持组织的应力分布状况。结果:种植体长度变化对种植体周围骨界面及牙槽骨应力的大小有较大的影响,两者呈负相关关系;而在临床常用的几种直径种植体中,直径变化对种植体周围骨界面及牙槽骨应力的影响不大。结论:在种植义齿设计时,应着重考虑种植体长度变化对种植体周围骨界面及牙槽骨应力的影响,种植体直径变化可不作考虑。
目前国内外关于种植体长度和直径对周围骨组织应力分布影响的报道很多,但结论不相一致。从理论上讲,为了使负荷在最大面积的骨组织上分布,应尽可能选用粗大的种植体,Rieger 等[1,2]人的研究证实了这一点,而Meijer[3]则认为骨界面应力受种植体长短影响不大;Lum[4]则通过实验发现应力多集中于种植体颈部而不是整个种植体周围,并据此推论使用短种植体是可行的。 为了解种植体长度和直径变化对应力分布的影响,本研究采用三维光弹应力冻结切片法,对力作用下下颌种植覆盖义齿的种植体长度和直径变化对支持组织应力分布的影响进行研究。
1材料和方法
1.1实验分组
为比较不同长度和直径变化对骨组织应力的影响,设计了两组实验模型。A组,采用直径为3.75 mm,长度分别为10、13、15、18 mm的螺旋圆柱状钛种植体;B组,长度为13 mm,直径分别为3.5、3.75、4.0 mm螺旋圆柱状钛种植体。环氧树脂下颌骨、上半口义齿和石膏底座的复制,种植体的植入部位,以及下颌种植覆盖义齿的制作参见参考文献[5]。
1.2加载及应力冻结参见参考文献[5]。
1.3冻结模型切片的制取与测试参见参考文献[5]。
2结果
A组,选用不同长度种植体时, 下颌种植覆盖义齿支持组织应力值及种植体周围应力值测量结果见图1、2。
图14 种不同长度种植体各切片点应力值变化曲线应力水平100%=0.5439 条纹级数/mm
图24 种不同长度种植体骨面应力测量结果
B组,选用不同直径种植体时, 下颌种植覆盖义齿支持组织应力值及种植体周围应力值测量结果见图3、4。
图33 种不同直径种植体各切片点应力值变化曲线应力水平100%=0.4708 条纹级数/mm
图43 种不同直径种植体骨界面应力值测量结果
3讨论
3.1种植体长度对牙槽骨及种植体骨界面应力的影响
从本实验结果来看,种植体长度与牙槽骨及骨界面应力的关系较大,随着种植体长度的增大,其支持组织——牙槽骨及种植体周围骨界面的应力值逐渐减小,两者呈反比例关系,这与有限元法研究[1,6]的结论相同。 这一结论可以用种植体表面面积的变化来解释,选择了较长的种植体,增加了种植体的表面面积,即增加了骨的结合面积,也就降低了界面的平均应力,所以种植体长度的增加可以明显降低骨界面的应力值,有效地减缓了种植体周围的骨吸收,维护了种植体的长期稳固。
关于种植体长度变化对牙槽骨应力的影响,主要是由于载荷一定时,种植体长度越大,其承受载荷的能力就越强,而造成其周围牙槽骨上的应力就越小。或者说是由于种植体长度越大,其周围骨界面上应力值越小,而整个颌骨作为一个整体受骨界面上应力影响而发生应力改变的可能性越小,故牙槽骨上应力值也就越小。
3.2种植体直径对牙槽骨及种植体骨界面应力的影响
从本实验结果来看,种植体直径变化对牙槽骨及种植体骨界面应力值的影响不大。这与Rieger等的结论不同。通过分析我们可以较清楚地看到,当种植体直径从小到大变化时,其牙槽骨及骨界面的应力值变化趋势是逐渐减小,只不过是由于种植体直径以0.25 mm的幅度变化,未能引起剧烈的应力值变化而造成。根据种植体表面面积与周围应力的关系,如果将种植体直径以较大幅度变化时,可能会引起较为明显的应力变化,这有待于进一步研究来证实。
但由于颌骨的解剖特点及种植体本身强度的限制,我们在临床工作中不可能选用过大或过小的种植体;并且据文献[1]报道,增加种植体的大小超过一定限度后,对应力分布的改变意义不大,而且过大的根面积可能导致骨内应力过小,而应力的过大或过小对骨组织都是不利的。
4结论
4.1全口种植覆盖义齿修复时, 种植体长度的变化对种植体周围骨界面及牙槽骨应力的大小有较大的影响,呈负相关关系。因此在可能的情况下,应优先选择在正常范围内(通常为10~18 mm)的较长的种植体,以降低骨组织应力,减缓牙槽骨及种植体周围骨组织的吸收。
4.2临床常用的几种直径的钛螺旋种植体中, 直径的变化对种植体周围骨界面及牙槽骨应力的影响不大,因此在一般情况下,可不把种植体直径的选择作为必要因素来考虑。
种植体数目变化对牙槽骨应力分布的影响
随着种植体数目的增加,义齿支持组织——牙槽骨的应力值逐渐减小,这主要是因为种植覆盖义齿是由种植体和牙槽骨共同承担和分配力。在力一定的情况下,由于种植体数目的增多,每个种植体上承受的力减小,从而增大了种植体的整体负荷能力,也就降了牙槽骨的负荷,而牙槽骨承担的力明显减小,从而有助医学教育|网搜集整理于维护牙槽骨的健康,减缓了牙槽骨的吸收。
因此,在患者口腔条件许可的情况下,可适当增加种植体数目。但种植体数目过多,可能会使局部种植体密集,不利于均匀分散力,还会影响种植体之间牙龈组织的健康。
支抗微种植体对兔牙周组织损伤的影响
随着瑞典科学家BRANEMARK等[1]骨结合理论的提出和现代种植技术的快速发展,一系列的种植体支抗在口腔正畸专业得以开发应用并取得了成功[2~5]。近年来发展很快的微型种植体支抗(MIA),以其支抗性能稳定[6]、体积小、植入部位灵活、低创伤、手术操作简单等特点受到了广大正畸临床医师的欢迎,逐渐成为支抗研究的亮点和热点。MIA由纯钛制成,直径一般在1.2~2.0 mm,可植入相邻两牙的牙根之间、上颌结节处、腭部及磨牙后区三角,可以说,微型种植体有效克服了传统的种植体支抗所受到植入部位的限制,几乎能够植入正畸医师所需要的任何一部位。临床上最常用的植入部位是两牙牙根之间的牙槽骨中。但是,由于两牙牙根之间的牙槽骨骨量的限制,在操作中植入点和 植入方向稍有偏颇,就容易导致不必要的组织损伤,最容易导致的并发症之一就是两侧邻牙的牙周膜被损伤。本项实验通过建立兔牙周膜MIA损伤模型,观察其损伤后组织愈合、修复的过程和方式,并探讨这种损伤可能会造成的后果和影响。
1 材料与方法
1.1 材料 健康家兔12只,雄性9只,雌性3只,体质量为(3.0±0.4)kg,兔龄8~11个月。微型种植体12枚,西北中邦公司生产,非自攻型,直径为1.2/ 1.4 mm ,长度为7 mm。
1.2 实验方法应用0.2 mL/kg地西泮和盐酸氯胺酮混合液,对家兔进行麻醉后,局部消毒,选择5号尖刀片切开上、下颌中切牙之间的牙龈黏膜组织,切口长约 2 mm ,距龈缘约3 mm,用骨膜剥离器剥离牙龈组织,用微型种植体专用的慢速车针钻开骨皮质。然后用专用螺丝刀将微型种植体直接旋入牙槽骨中。旋入微型种植体时要使植入方向发生偏移,以确保能够损伤相邻牙齿的牙周膜。术后即刻用螺旋CT对手术部位进行断层扫描(层距为1 mm),然后利用三维软件进行该部位的三维重建,观察种植体所处的位置以及与邻牙牙根之间的解剖关系,如经检查方向有误,种植体与邻牙牙根无接触,则取出后变换方向重新植入,再次经CT检查与邻牙牙根有接触后为成功。即刻用专用螺丝刀直接将微型种植体直接从骨组织中旋出。将12只家兔分别在手术后的第1、5、28、56天处死,每次处死3只。
1.3 标本的制作及病理结果的观察 取下包含受损伤牙齿的上、下颌骨骨块,修整、固定、脱钙脱水,石蜡包埋,切片(厚3 μm),苏木精-伊红染色,光学显微镜下(100~200倍)观察受损牙周膜的愈合过程及其修复方式,并照相。
2 结果
手术后第1天,受损伤部位的牙周膜连续性受到破坏,产生机械断裂,牙周膜纤维与牙骨质的连接中断,牙周膜局部增宽。手术后第5天,受损伤部位开始修复,牙周膜的纤维结缔组织增生,排列稍乱;纤维母细胞增多,细胞核较大,胶原明显增多;牙周膜下方可观察到有化脓性炎症,周围有大量的中性粒细胞浸润。手术后第28天,受损伤部位的牙周膜内纤维结缔组织的修复已经基本完成,牙周膜纤维与牙骨质的连接重新建立,但牙周膜的宽度比正常情况下增宽,胶原纤维增多,排列稍有紊乱,炎症已经基本消退;牙周膜与牙槽骨之间的连接逐渐建立。手术后第56天,受损伤组织的修复已经基本完成。牙周膜、牙骨质及牙槽骨三者之间又建立了紧密的联系,但修复后的牙周膜宽度增加,胶原增多,可见比较粗大的胶原纤维带的形成,其细胞成分相对较少,与牙槽骨的连接仍欠平滑,束状骨板还未完全修复。
3 讨论
牙周组织包括牙周膜、牙槽骨和牙龈。其中牙周膜的作用最为重要[7]。本文结果显示,牙周组织在受到损伤后基本可以顺利地进行自我修复。牙周膜的修复仍为纤维结缔组织的修复,在功 能上得到了最大程度的保护。但是牙周膜的修复并不是完全的、彻底的。正常的牙周膜纤维排列规则有序,含有大量的细胞成分,这对维持牙齿的正常功能具有重要的作用。而修复后的牙周膜,宽度略有增加,胶原成分相对增多,可见比较粗大的胶原纤维带的形成,其细胞成分相对较少,这些变化对受损伤牙齿的生物学行为会带来一定的负面影响。总体而言,微型种植体对家兔牙周膜所造成损伤的修复整体结果是较好的,因为这种损伤的范围较小,作用时间短,而且是在无菌手术操作的条件下发生的。有研究表明,牙周组织再生困难的可能原因是缺乏足够的活性细胞,残余的牙周膜及骨组织自身固有修复能力较弱[8]。本实验中,微型种植体致牙周膜损伤的范围较小,作用时间短,而且是在无菌手术操作的环境下发生的,所以有足够的剩余牙周组织进行修复。但是在临床上,如果微型种植体植入后损伤了牙周组织而没有被发现,或者手术时损伤的范围较大,损伤是否会加重,组织修复结果是否仍如本实验的结果,以及受伤牙齿在受到正畸力时是否还能够发生正常的移动,还需要进一步的实验和探讨。本实验是人为地用微型种植体造成兔牙周组织的损伤,损伤较为轻微,但是大部分的牙骨质都被不同程度的伤及,说明微型种植体已经和牙根发生了接触,可是在种植体植入的操作过程中,手术者并没有感觉到明显的阻碍感。提示,在临床操作中,尽管使用的微型种植体是非自攻型的,但是仅凭手感来确定微型种植体有无损伤牙根还是不确定的,必须拍摄X线片予以确认。当然,在的临床工作中,让每一个病人植入微型种植体后都做螺旋CT扫描和三维重建也是不太现实的,但是起码应该拍摄X线根尖片,对可疑与牙根有接触者,应再从不同角度拍摄,直至确定是否有接触。此外,许多学者认为,植入颌骨内的微型种植体在受到正畸力的作用下,会发生少量的位移,主要发生在垂直方向上[9,10]。虽然水平方向位移较小,但是随着治疗的进程,很有可能会使原本没有接触的牙根与微型种植体发生接触,这时病人可能会产生疼痛的感觉或者受力牙齿不再发生移动,重要的是微型种植体可能会伤害到一些重要的组织器官,如上颌窦、下颌神经管以及小血管等[11]。所以,定期拍摄X线片复查有一定的必要性,尤其是原本牙槽骨骨量较少或植入后的微型种植体与周围的组织器官比较接近者,而且如果选用的是自攻型微型种植钉则更要注意此类情况的发生。
综上所述,在进行微型种植体植入手术的操作过程中,必须对植入的位置和方向进行精确地控制,尽量避免伤及邻牙的牙周组织。